Ciencia y tecnología

Los efectos de la luz en los objetos

La interacción de la luz con la materia permite un mayor control de los objetos que se manipulan

efectos-luzMéxico, D.F.— La luz tiene fascinantes efectos sobre la materia, uno de ellos es su capacidad de ejercer fuerza y presión, destacó Karen Volke, investigadora del Instituto de Física de la UNAM (IFUNAM).

Gracias a la luz se puede lograr desde la propulsión de un velero solar hasta la captura de una bacteria por medio de un láser, fenómenos que se explican por la fuerza que ejerce la luz sobre la materia.

Ahora se sabe que la luz es capaz de ejercer presión sobre los objetos, pero llegar a esta afirmación requirió de muchos años de trabajo, teorías y experimentos. En la primera mitad del siglo XVII Johannes Kepler se preguntó si la radiación ejercía algún tipo de presión o no. El propio astrónomo y matemático alemán respondió de forma afirmativa a la interrogante y para ello explicó el fenómeno con la dirección que toma la cola de los cometas. Dijo que este objeto, independientemente de donde se moviera su cauda, siempre apuntaba en dirección opuesta al Sol. “Hoy sabemos que este efecto de la cola de los cometas no es sólo por la radiación sino principalmente por el viento solar”, señaló la investigadora.

Dos siglos después, en 1873 Maxwell demostró teóricamente que la luz por sí misma podía ejercer fuerzas ópticas, denominadas presión de radiación. Quien también intentó demostrar la fuerza de la luz sobre la materia fue el científico Williams Crookes, inventor del radiómetro de Crookes o molino de luz, el cual consiste en una bombilla en cuyo interior se halla un bulbo y en la punta de éste, contraria a la base, una aguja con cuatro pequeñas paletas, dos plateadas de un lado y dos negras del otro.

Lo que se buscaba con este invento es que las paletas giraran cuando la luz fuera reflejada por la cara plateada, ya que la transferencia de momento lineal —es decir, la fuerza— de la luz reflejada sería aproximadamente el doble que el de la luz absorbida en la cara negra. Efectivamente, el molino gira al ser expuesto a la luz, pero de manera contraria a lo que se esperaba. Esto ocurre porque los efectos térmicos que provoca un movimiento hacia las zonas de menor temperatura, dominan sobre la presión de radiación. Entonces este experimento tampoco logró explicar la fuerza de la luz.

Las delicadas manos de la luz

Mientras en el mundo ha habido gente que ha dedicado sus esfuerzos a demostrar la fuerza de la luz sobre objetos en el espacio, en otros puntos del planeta se empezó a estudiar su efecto sobre objetos microscópicos: “Se dieron cuenta que la luz no sólo podía ejercer presión sobre ellos y empujarlos, sino también atraparlos en las regiones de mayor intensidad”, con lo que surgieron las pinzas ópticas.

Desde su invención en 1986, las pinzas ópticas son una potente herramienta de micromanipulación que actualmente cuenta con una amplia gama de aplicaciones en biología y física, áreas en las que es posible guiar, atrapar y separar objetos microscópicos, como una célula.

Las pinzas ópticas son capaces de manipular partículas dieléctricas tanto de tamaño nanométrico como micrométrico ejerciendo fuerzas extremadamente pequeñas por medio de un haz láser altamente enfocado. El haz es típicamente enfocado enviándolo a través de un objetivo microscópico.

Una explicación apropiada del comportamiento del atrapamiento óptico depende del tamaño de la partícula atrapada relativo a la longitud de onda de la luz utilizada para atraparla. En casos en donde las dimensiones de la partícula son mayores que esta longitud de onda, un simple tratamiento de rayos es suficiente. Por otro lado, si la longitud de onda de la luz excede a las dimensiones de la partícula, entonces las partículas deberán ser tratadas como pequeños dipolos eléctricos en un campo eléctrico.

Fuente: Teorema Ambiental, imagen

Suscríbete al Boletín

PAÍSES QUE NOS ESTÁN VIENDO